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ABSTRACT
The benefits and costs of power plants, including their 
environmental impacts, depend on their technology and 
on how much electricity each plant actually generates. 
However, plant-level generation data are not reported in 
most countries, including developing countries where 
electricity generation is projected to rapidly expand. This 
technical note documents methods to estimate the annual 
electricity generation of power plants for the Global Power 
Plant Database. We use distinct estimation models for 
different fuel types, including wind, solar, hydropower 
(hydro), and gas power plants. The methodology combines 
statistical regression with machine learning techniques. 
Explanatory variables include plant-level characteristics 
such as plant size and fuel type, and country-level charac-
teristics, such as country- and fuel-specific average gen-
eration per megawatt of installed capacity. We show that 
fuel-specific models can provide more accurate results for 
wind, solar, and hydro plants. Estimations for natural gas 
plants also improve, but the error remains high, especially 
for smaller plants.

1. INTRODUCTION 
Electricity powers modern society. Despite its importance, 
information about actual electricity generation by power 
plants is often closely held by plant and system operators 
and difficult for others to access. 

World Resources Institute (WRI) and its partners have 
created the Global Power Plant Database (GPPD) as an 
open-source, open-access dataset of the world’s power 
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plants (Byers et al. 2018). It is assembled from hundreds 
of public sources and contains information on technical 
characteristics of power plants, including capacity (mega-
watts), location, and fuel type. The electricity generation 
(gigawatt-hours) of the plants is also included in the 
database when such information is publicly reported.  
As of June 2019, validated sources of reported plant  
generation are available for 33 countries (Appendix A).

Power plant capacity, usually measured in megawatts 
(MW), describes a facility’s maximum electric power rate. 
If a 100 MW plant runs at its maximum capacity for one 
hour, it will generate 100 megawatt-hours of electricity.  
In other words, capacity measures the size of the plant 
and its potential generation rate, while generation 
describes the actual electricity output of the plant over  
a period of time.

Thermal plants use several inputs to produce electricity, 
including fuel to start and run their turbines and water to 
cool the plants. In addition to electricity, outputs typically 
include (warmer) water sent back to a water body and 
steam that evaporates, plus pollutants to air, water, and 
soil. Energy planners can use geo-located historical plant 
generation to both monitor emissions and evaluate how 
best to meet changes in electricity demand over time.

How often and how intensely a power plant runs varies 
across plant types. Annual power plant generation can be 
estimated using methodologies that are based on electric-
ity grid optimization (also known as optimal dispatch) or 
statistical models.

Grid optimization models consider each power plant, its 
technical characteristics, and the cost of input fuels, and 
dispatch the simulated plants to minimize the total cost of 
generation subject to the following:

1.	 Meeting the quantity of electricity demanded in every 
period

2.	 Meeting any technical constraints, such as minimum 
down times or maximum ramp rates

3.	 Accounting for the transmission and distribution 
constraints (if modeled)

These models approximate plant-level generation by esti-
mating “optimal generation,” though they do not neces-
sarily reflect actual historical generation, which may  
have been produced “nonoptimally.” To produce high-

quality results, optimal dispatch models can be compu-
tationally intensive and require detailed information on 
plant efficiency, which can vary based on operational load 
and plant age. Efficiency information is not currently 
available globally.

Statistical models use information on power plants with 
reported annual generation to estimate the correlation 
between annual generation and plant characteristics such 
as capacity, fuel type, and commissioning year. These 
estimated correlations are then applied to the character-
istics of plants without reported generation to create their 
estimated yearly generation. In contrast to a dispatch 
model, a statistical model estimates generation based on 
a power plant’s similarity to plants with reported genera-
tion, not based on a system optimization.

In our approach, statistical models with machine learning 
techniques are used to estimate annual plant generation 
as accurately as possible. Machine learning algorithms 
capture correlations between generation, technical char-
acteristics, and system variables.

Ummel (2012) approached the problem using unit-level 
data. Since generation data are often reported at a plant 
level globally, here we estimate plant-level generation.

Section 2 summarizes the data. Section 3 introduces the 
methodology. Sections 4–7 describe the fuel-level esti-
mation methodologies for natural gas, wind, solar, and 
hydropower (hydro). Section 8 explains the limitations of 
the methods and Section 9 concludes.

2. PLANT-LEVEL GENERATION DATA 
Very few jurisdictions openly publish annual power-plant 
generation data. Even when published, the data are often 
not in a consistent format. Over the past years, we have 
aggregated trusted available information. Table 1 reports 
the number of plants and total capacity for which we 
have annual generation data for 2016, the year we use to 
perform the generation estimation analysis and modeling.

Generation data are reported for almost 50 percent of 
plants, but most of them are concentrated in the United 
States and other developed countries.

Appendix D lists the external data sources used in  
this analysis.



TECHNICAL NOTE  |  March 2020  |  3

Estimating Power Plant Generation in the Global Power Plant Database

Table 1  |  Reported Generation by Country or Region in 2016

PLANTS IN GLOBAL 
POWER PLANT 
DATABASE

PLANTS WITH 
REPORTED 
GENERATION DATA

PLANTS WITH 
REPORTED 
GENERATION DATA (%)

CAPACITY WITH 
REPORTED 
GENERATION DATA (%)

SOURCE

UNITED STATES 8,644 7,944 91.9 97.5 EIA

INDIA 861 427 49.6 93.2 CEA

AUSTRALIA 429 248 57.8 69.1 NGER

EUROPEAN UNION 9,846 679 6.9 39.4 ENTSO-E & JRC-PPDBb

OTHERa 10,304 272 2.6 1.0 Multiple sourcesc

TOTAL 30,084 9,570 31.9 -- --

Notes: a See shaded countries in Appendix A for the full list. EIA stands for Energy Information Administration, CEA for Central Electricity Authority, and NGER for National Greenhouse and Energy 
Reporting. ENTSO-E stands for European Network of Transmission System Operators for Electricity, and JRC-PPDB for The Joint Research Centre Power Plant Database. 
b Kanellopoulos et al. 2019.  
c Egypt: Egyptian Electricity Holding Company, http://www.moee.gov.eg/english_new/report.aspx; Latvia: ENTSO-E; Montenegro: JRC-PPDB (Kanellopoulos et al. 2019); Morocco: Office National de 
l’Electricite, http://www.one.org.ma/FR/pdf/Rapport%20d’activit%C3%A9s%202016%20FR.pdf; Kenya: Kenya Electricity Generating Company; Vietnam: Open Development Vietnam, https://vietnam.
opendevelopmentmekong.net/. 

Sources: See Appendix D for links to the databases for EIA (Forms EIA-860 and EIA-923), CEA, NGER, and ENTSO-E. 

3. ESTIMATING ANNUAL GENERATION
3.1 Plant Operation Depends on the Fuel the 
Plant Uses
Different types of plants have different generating pat-
terns. Nuclear, coal, and some natural gas plants typically 
run continuously, or at baseload, since they have relatively 
low running costs once in operation, but require time 
and resources to turn on, shut off, or change operating 
level. Consequently, plant operators limit these ramp-up 
and ramp-down events. Other natural gas plants with 
quicker start-up and shut-down times are run when 
demand increases and are referred to as mid-merit or 
peaking plants. Plants that rely on intermittent renewable 
resources, such as the sun or wind, generate only when 
those resources are available.

Different daily generation patterns translate into different 
annual average generation by plant, which is commonly 
measured and expressed by the capacity factor. The 
capacity factor is a measure of the frequency and intensity 
of generation. The average capacity factor (cf) of plants 

using fuel f in country c and year y is the ratio of genera-
tion of all plants of fuel f within country c with respect to 
the maximum potential generation of those plants over 
the same time period:

Equation 1

cffcy = tgfcy / (tcfcy • # hours in a year)

Here, tgfcy represents total generation of plants of fuel f in 
country c for year y, in megawatt-hours; tcfcy is the aggre-
gate capacity of all plants with fuel f in country c for year 
y, in megawatts.

In general, the capacity factor of a power plant is always 
between 0 and 1. A capacity factor of 0 means the plant 
did not operate during the year, and a value of 1 occurs 
when a plant operates continuously at full power over the 
entire year. Annual capacity factors never reach 1 in prac-
tice, since plants require maintenance during the year and 
are therefore occasionally off-line. The highest realistic 
annual capacity factors are around 90 percent.
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3.2 This Analysis Addresses Wind, Solar, 
Hydro, and Natural Gas
Since plant generation depends on the type of plant, 
we start by separating the power plants by fuel type to 
increase estimation accuracy. We focus on estimating 
generation for plants where such information is not read-
ily available, but where we have sufficient information for 
the statistical estimates to be appropriate: plants powered 
by intermittent renewables (solar and wind), hydro, and 
natural gas. 

We do not address nuclear power generation, as informa-
tion for all nuclear power plants is reported by the Inter-
national Atomic Energy Agency. In this analysis, we also 
exclude coal plants because coal-plant generation esti-
mates are pursued by other dedicated projects; e.g., Gray 
et al. (2018) published by Carbon Tracker. For other types 
of plants, we have too few observations: oil plants repre-
sent only 4.7 percent of capacity in GPPD; biomass, waste, 
geothermal, wave, and tidal are also represented by a 
relatively small number of plants, though these fuel types 
may constitute a large portion of generation within some 
geographies. With such sparse data, statistical analysis 
would not provide accurate results, and it would be chal-
lenging to characterize and communicate errors for those 
fuels. We therefore impute generation for these types of 
plants by using average capacity factors by country for 
those fuel types. 

In some cases, it is reasonable to assume that the genera-
tion of a power plant is not affected by the generation 
patterns of other power plant types in the system. For 
example, solar and wind generate only when the sun 
shines or the wind blows and tend to do so at very low 
marginal costs. These plants are part of the generation 
mix any time they are available, subject to transmission 
constraints. For thermal power plants this assumption 
is less appropriate, as the system operator will generally 
dispatch plants that are cheaper relative to all available 
plants. A plant’s generation will therefore depend not only 
on its characteristics and costs, but also on the character-
istics and costs of alternative plants and on total demand 
for electricity. 

3.3 Baseline Model
For most countries, we have information on total annual 
generation by fuel type. The International Renewable 
Energy Agency (IRENA) provides both national-level 
capacity and national-level generation for renewable 
plants, so we can build a consistent measure of annual 
capacity factor. For fossil fuel plants in Organisation for 
Economic Co-operation and Development (OECD) coun-
tries, the International Energy Agency (IEA) reports both 
generation and capacity by country by fuel, which pro-
vides a measure of generation per megawatt installed. For 
fossil fuel plants in non-OECD countries, we have a more 
imperfect measure, as the reported generation by country 
by fuel comes from the IEA, but total capacity comes from 
national totals through the GPPD. In the first version of 
the Global Power Plant Database, Byers et al. (2018) used 
this information to define annual estimated generation of 
plant i using fuel type f in country c for a given year y as 
the average capacity factor for plants of fuel f in country 
c for year y multiplied by the capacity of plant i, where 
capacity factor is defined in Equation 1.

Equation 2

ĝifcy = cffcy  ⋅ cifcy  •   # hours in a year

Here, ĝifcy is the estimated annual generation in megawatt-
hours for plant i with fuel f in country c for year y; cf 
represents the capacity factor by fuel; ci is the capacity of 
plant i in megawatts.

This approach, which we refer to as the baseline model in 
the rest of the document, has the desirable feature that 
the sum of the generation of all plants adds up exactly to 
the reported generation by fuel type. However, it assumes 
that all plants of the same fuel type generate at the same 
intensity (capacity factor) and ignores many other relevant 
factors. As a result, it is associated with relatively large 
estimation errors.
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3.4 Including Other Predictors of Generation
Plant-level generation depends on plant-level and system-
level characteristics. Wind, solar, and hydro generation 
depend in part on natural resources availability (wind 
speed, solar irradiation, and water runoff, respectively). 
These climatic measurements are available from global 
physical models like the Modern-Era Retrospective analy-
sis for Research and Applications, Version 2 (MERRA-
2) by NASA (the U.S. National Aeronautics and Space 
Administration), and ERA5 by the ECMWF (European 
Centre for Medium-Range Weather Forecasts). In sections 
4, 5, 6, and 7, we explain how these measurements are 
derived and used in our model.

The generation of thermal power plants, which mostly run 
on fossil fuels, depends on plant characteristics such as 
size and thermal efficiency, and the fuel used and its price, 
but also on system characteristics, such as the cost of 
generation for alternative plants and the level of electricity 
consumed, which jointly determine whether a plant will 
be dispatched or not. Not all of these variables are glob-
ally available, so we use country-level capacity factors as a 
proxy for relevant country-level information.

3.5 Machine Learning Model
Our main goal is to estimate annual historic plant-level 
generation accurately. Machine learning models are well 
suited for the challenge (Olden et al. 2008). We use super-
vised machine learning models, which define the relation 
between the dependent variable—in our case, plant-level 
annual generation—and independent variables, or pre-
dictors, chosen by the researchers. With finely tuned 
parameters, the model is optimized over many iterations 
to minimize the estimation error, given a set of data 
that includes both dependent and independent variables 
(called the labeled training data).

Machine learning models can use a large number of 
algorithms. We adopted the gradient boosting tree (GBT) 
regressor as the model algorithm. The GBT is an appropri-
ate modeling algorithm in this case due to the following:

1.	 Regression trees can capture nonlinear relationships 
(e.g., wind generation and wind speed don’t have a 
linear relationship. At some point a turbine won’t gen-
erate any more electricity as the wind speed continues 
to increase).

2.	 Tree-based models allow us to easily see which pre-
dictors contribute more to the prediction.

3.	 Tree-based models predict by looking at similar 
samples in the training data, so the prediction won’t 
go too far from the range of the target variable in the 
training set.

This algorithm iteratively builds a set of decision trees 
that cover the space of plant-level characteristics and 
aim to explain changes in the dependent variable. Using 
a large number of trees that are built systematically 
improves the predictive performance of the model, even  
if each tree is fairly weak on its own (Elith et al. 2008).

In our case, the dependent variable can be either plant-
level annual generation or annual capacity factor. They  
are directly related, as outlined in Equation 1.

We choose capacity factor as the dependent variable for 
two reasons. First, using generation would put more 
weight on minimizing the error for larger plants, which 
tend to generate the most over the year. Second, it is easier 
to interpret results for capacity factor without further 
normalization. Once we obtain an estimate for the capac-
ity factors, it is easy to calculate annual generation for a 
plant by inverting Equation 1.

One of the risks of machine learning models is that they 
“overfit” to the training data, leading to a small prediction 
error for the original training set, but a large one when 
applying the model to new or unseen data. This risk is 
enhanced if the training data are not representative of all 
potential observations, which occurs in our case as most 
of the labeled observations in the current iteration of the 
GPPD are for plants in the United States. We mitigate this 
risk by

	▪ including the fuel-country capacity factor as an input 
variable in the plant-level generation estimation; 

	▪ dividing the United States into regions based on the 
North American Electric Reliability Corporation 
(NERC) classification and using separate region-level 
capacity factors, thereby increasing the variation in 
fuel-country capacity factors; and 

	▪ testing the models on test data that are not used dur-
ing model training.



6  |  

The U.S. Energy Information Administration (EIA) 
reports capacity and generation information for power 
plants of all fuel types in the United States. Each unit  
is labeled with the NERC region it belongs to. We derive 
NERC-region capacity factors by fuel by aggregating the 
unit-level information to regional levels.

3.6 Data Cleaning and Outlier Detection
The analysis is based on official information, but genera-
tion or capacity may be reported incorrectly, leading to an 
unrealistic capacity factor for a given plant. In other cases, 
plants may not operate for a whole year due to mainte-
nance problems. We cannot predict prolonged mainte-
nance periods within this type of analysis and focus on 
predicting generation for plants that are consistently 
available during the year. Outliers may unduly influence 
the model and lead to inaccurate predictions. 

To reduce measurement error, we start by dropping  
cases where the capacity factor is either smaller than 0  
or larger than 1. Capacity factors exceeding 1 likely rep-
resent mislabeled capacity or generation values. Capacity 
factors below 0 may be caused by power plants importing 
more power than they export, as is the case for pumped 
storage facilities. 

We also eliminate outlier observations with capacity fac-
tors that are more than three standard deviations from 
the mean (in line with Iglewicz and Hoaglin 1993) calcu-
lated across all countries or regions for the particular  
fuel type.

Details on any additional fuel-specific data cleaning 
processes are provided in each section.

3.7 Model Validation and Testing
We split the labeled dataset into training, validation, and 
test sets. The model is fitted to the training set and tuned 
based on its performance on the validation set, in an itera-
tive manner if necessary. It is then evaluated on the test or 
unseen data.

The test data consist of 20 percent of the original data-
set, stratified by country to ensure that they match the 
regional distribution of the overall labeled dataset. 

We use stratified K-fold cross validation to divide the 
sample between validation and training sets. With cross 
validation, the model is optimized over K equally sized 
subsamples, or folds, of the training data, as shown in 

Figure 1 for the case of 10 folds. The model is trained 
on (K-1) folds and tested, or validated, by applying the 
trained model on the subsample that was not used (Varian 
2014). This is repeated by rotating the subsample that is 
kept out. By repeating this process K times, we are able to 
gain K validation scores. The final validation score is the 
arithmetic mean of the K scores. 

K-fold cross validation mitigates the risk of a single 
training set not being representative of the larger data 
and skewing the model (Shulga 2018). It also allows for 
validation while using all of the data for training, which is 
particularly helpful when the data are limited, as in  
our case.

We tune the model to attain lower cross-validation scores. 
Eventually, we apply the fine-tuned model on the test set 
to assess the model’s performance. Figure 2 illustrates  
the entire process of training, validation, and testing.  
The same process is conducted for each of the fuel- 
specific models.

3.8 Model Performance Evaluation
To evaluate model performance, we compare the esti-
mated capacity factor with the reported capacity factor 
using two metrics, the mean absolute error (MAE) and the 
mean absolute percentage error (MAPE):

Equation 3

where n is the sample size, cfi is the true capacity factor 
for observation i, and cfi  is the estimated value of the 
predicted variable. The expression between vertical bars 
is the absolute value.

The MAE compares the true and estimated values directly 
and measures the average deviation across all observa-
tions, providing an error measure that is easy to interpret, 
but does not assess the relative size of the error. The 
MAPE, on the other hand, is unitless and is therefore 
easier to use when comparing accuracy across capacity 
factors with different magnitudes.

^
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TRAINING SET

Training folds
Test fold

. . .

First iteration

Second iteration

Third iteration

Tenth iteration

E1

E2

E3

E10

E = 1
10
—�

10

i = 1

Ei

80% 20%

80% 20%

Countries/Regions

Whole Labeled Dataset

10-Fold Cross Validation Test

Figure 1 |  Cross Validation for Case with K=10 Folds

Note: Ei = average of the predicted variable across training folds in iteration i.

Sources: Rosaen, K. 2016. “Learning Log / 2016-06-20.” Blog. http://karlrosaen.com/ml/learning-log/2016-06-20/. 

Figure 2 | Training, Validation, and Test Split

Source: Authors. 
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The MAE and MAPE both summarize the model perfor-
mance by measuring its error. Throughout the rest of the 
paper, we compare the model outputs to the errors that 
derive from assuming that generation per megawatt is 
always the same for plants with the same fuel type  
within a country/region (the baseline model) and verify 
that the methods we use are an improvement over the 
baseline model.

4. GAS
4.1 Model Description
Gas-fired power plants generate electricity by burning 
natural gas and use different technologies, including com-
bined cycle gas turbines (CCGTs), open cycle gas turbines 
(OCGTs), and steam turbines (STs), which are typically 
older. The technology can affect the plant’s capacity factor. 
In general, CCGTs are more expensive to build, but are 
more efficient, which makes them more appropriate to use 
for continuous or baseload generation. CCGTs recycle heat 
from the combustion process and use it for further gen-
eration. OCGT power plants are smaller, have lower con-
struction costs, and are less efficient, but they are faster to 
switch on and off, making them suitable for intermittent 
or occasional use such as peaking or mid-merit (IEA and 
NEA 2015). We include technology type as one of the 
input variables in the machine learning model. Whereas 
CCGT plants are often explicitly identified in the technol-
ogy description, OCGTs can be associated with several 
technologies, although they are roughly equivalent to the 
combustion gas turbines referred to in Table 2. CCGT 
plants have generally higher capacity factors, as reported 

GENERATING TECHNOLOGY AVERAGE CAPACITY FACTOR NUMBER OF PLANTS
Combined cycle gas turbine 0.42 417

Single shaft combined cycle gas turbine 0.45 17

Fuel cell 0.66 32

Combustion gas turbine 0.18 543

Internal combustion engine 0.23 88

Steam turbine 0.13 128

in Table 2 for the United States in 2016. Other technolo-
gies are not as common. Internal combustion engines 
have low efficiency, high emissions, and high maintenance 
costs. Fuel cells use an electrochemical process to convert 
the hydrogen obtained from natural gas to electricity. 
They tend to be expensive, but are used in combined 
heat and power applications (Darrow et al. 2017), which 
explains why they are used relatively intensely with a 0.66 
capacity factor.

The average capacity factor of CCGTs was about 0.42 for 
U.S. natural gas plants, equivalent to their generating at 
maximum capacity for more than 40 percent of the year. 
Combustion gas turbines (GTs) and internal combustion 
engines (ICs) have much lower average capacity factors 
while STs tend to be older and have the lowest values. 

The generating technology information is available from 
the EIA for U.S. gas plants and on the commercial World 
Electric Power Plants (WEPP) Database by S&P Global 
Platts for non-U.S. gas plants.

In addition to technology, age and capacity of the plant are 
also included as independent variables, together with the 
average capacity factor across all the natural gas plants for 
each region.

	▪ Capacity

	▪ Age

	▪ Generating technology type (CCGT, GT, IC, ST,  
fuel cell [FC], single shaft combined cycle gas  
turbine [CS])

	▪ Average natural gas capacity factor by region

Table 2  |  Natural Gas Average Capacity Factor by Generating Technology, United States (2016)

Source: Authors’ elaboration of Global Power Plant Database data, originally from the U.S. Energy Information Administration. 2016. “Form EIA-860.” https://www.eia.gov/electricity/data/eia860/.
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GDP Database

Platts

EIA

IEA Net Electrical
Capacity Report

IEA Website Total Generation
by Country

Capacity Factor
by Country

Total Capacity
by Country

NERC Regional Capacity
Factor in the US

US plants Generating
Technology

Non-US Ptlants 
Generating Technology

Age

Capacity

W
hole Labeled Dataset

Gradient Boosting
Tree Regressor

Cross-Validation Set

Test Set

Predicted Capacity Factor
If country not in IEA data

80%

20%

Age is correlated with plant efficiency, with the newer 
plants being more efficient and therefore dispatched more 
frequently. Capacity is also correlated with more frequent 
dispatch or higher intensity of operation as larger plants 
tend to be used more intensely.

Plant capacity, age, and unit type are fed into the gradient-
boosting tree model, together with the capacity factor by 
region, to determine the predicted capacity factor for each 
plant. The workflow is depicted in Figure 3.

The model allows us to estimate generation for 1,482 
plants whose generation amount in 2016 is currently not 
available in GPPD. For 487 plants where we do not have 
technology type, since they are not matched with any 
records in WEPP, we will continue to impute generation 
using the capacity factor by region or country.

4.2 Data
Global Power Plant Database. The GPPD contains 
2,598 gas-fired power plants around the world commis-
sioned before 2016; about 70 percent of the plants have 
reported generation. Table 3 shows that North America 
accounts for 66 percent of all gas plants, but 93 percent of 
plants with reported generation.

Many power plants use gas in addition to other fuels and 
some contain several turbines with different generating 
technologies. For the sake of consistency, we model only 
the gas plants whose proportion of gas-based capacity is 
above 95 percent (relative to all fuels) and whose propor-
tion of any single generating technology (categorized 
as one of CCGT, CS, GT, ST, IC, or FC) is also above 95 
percent of total plant capacity. This narrows the training 
set from 1,780 to 1,284 observations. 

Figure 3 | Gas-Fired Power Plant Generation Estimation Workflow

Notes: GPPD stands for Global Power Plant Database, EIA for Energy Information Administration, IEA for International Energy Agency, and NERC for North American Electric Reliability Corporation.

Source: Authors. 
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One hundred eighty-six gas plants, corresponding to 14 
percent of remaining observations, have reported capacity 
factors lower than 1 percent (corresponding to approxi-
mately 100 hours of full-intensity generation per year). 
These plants are difficult to model with our estimation 
tools. We therefore removed the data points, leaving us 
with 1,098 labeled observations.

EIA-923

The EIA publishes plant-level generation and generat-
ing technology for each unit using information collected 
through “Form EIA-923.” Matching this information 
with the GPPD, we label each plant with either a unique 
generating technology or set of generating technologies 
depending on the configuration of the plant.

World Electricity Power Plants by Platts

While the EIA collects generating technology only for 
gas plants in the United States, the WEPP database 
holds similar information for gas plants worldwide. We 
extracted relevant information from both sources for the 
analysis, but do not republish the WEPP information as it 
is proprietary. 

The prediction errors on the test data of 220 observa-
tions for the natural gas plant generation information are 
reported in Table 4. The metrics on test data are more 
realistic reflections of the model estimation performance 
when using unseen datasets. Appendix B presents the 
validation scores for each fold in the cross validation.

The model predicts plant generation with an absolute 
error of 0.136 and an average percentage error of more 
than 170 percent. While high, this is a distinct improve-
ment compared with the baseline, which uses uncorrected 
average capacity factor, resulting in an error of more than 
350 percent, as shown in Table 4. 

Figure 4 shows that the proposed model displays more 
variation across plants than the baseline approach, which 
leads to a more accurate prediction. There are a number 
of plants with very low generation during 2016, shown by 
the cluster of dots close to the vertical axis. Generally, the 
model overestimates the capacity factor for low capacity 
factor plants, as the points are above the 45-degree line, 
and underestimates the capacity factor of high capacity 
factor plants.

Figure 5 shows that the error varies by size of the plant 
and is typically smaller for larger plants, which tend to 
generate more continuously. The x axis is the capacity 

NUMBER OF 
GAS PLANTS BY 
REGION

GAS PLANTS 
BY REGION 
(% OF WORLD 
PLANTS)

NUMBER OF GAS PLANTS WITH 
REPORTED GENERATION DATA 
(PLANTS THAT CAN BE USED  
FOR TRAINING)

GAS PLANTS WITH REPORTED 
GENERATION DATA (% OF WORLD 
PLANTS WITH REPORTED 
GENERATION) 

NORTH AMERICA 1,708 65.7% 1,651 92.8%

SOUTH AMERICA 128 4.9% 0 0.0%

EUROPE 267 10.3% 73 4.1%

AFRICA 68 2.6% 1 0.0%

ASIA 425 16.4% 55 3.1%

AUSTRALIA/OCEANIA 2 0.1% 0 0.0%

TOTAL 2,598 100% 1,780 100%

Table 3  |  Gas-Fired Plants and Plants with Reported Generation by Region (2016) in the GPPD

Source: Authors’ elaboration of Global Power Plant Database data.
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BASELINE MODEL PROPOSED MODEL
MAE 0.231 0.136

MAPE 3.537 1.731

Table 4  |  Model Test Scores for Yearly Capacity Factor of Gas Plants (2016)

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error.

Source: Authors.
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Figure 4 | Natural Gas Reported versus Estimated Capacity Factor for 2016 on Test Set, Baseline versus Proposed Model

Source: Authors.

cutoff above which the accuracy metrics are recalculated, 
or, conversely, the capacity cutoff below which plants are 
not considered. The mean absolute percentage error never 
falls below 50 percent, suggesting that the predictors we 
have are not sufficient to accurately estimate plant-level 
generation for natural gas plants.

The training data selection and method implementa-
tion do not allow us to estimate which plants will be on 
extended maintenance or generate for fewer than 100 

full-intensity hours during the year. In our sample, this 
corresponds to about 14 percent of plants with reported 
generation and technology type.

Tree-based models provide relative importance scores for 
each of the predictors used in the trained model. Figure 6 
reports these “feature importance scores,” which always 
sum to one across all predictors. In this case, a plant’s 
capacity and age are the relatively more important predic-
tors of its capacity factor.
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Figure 5 | Gas Model Accuracy by Plant Size

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error. MW stands for megawatt.

Source: Authors.

Figure 6 | Relative Importance of Predictors in the Gas Model

Notes: Relative importance scores do not sum to exactly 1 due to rounding. MW stands for megawatt, CCGT for combined cycle gas turbine, GT for combustion gas turbine, IC for internal combustion 
engine, CS for single shaft combined cycle gas turbine, ST for steam turbine, and FC for fuel cell.

Source: Authors.
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5. WIND 
5.1 Model Description
The generation of a wind turbine depends on how much 
wind blows at its location, and factors such as transmis-
sion availability. IRENA reported in 2016 that the capacity 
factors of wind farms vary significantly by country, with 
25 percent of country capacity factors below 18 percent 
and 25 percent larger than 31 percent. Even in the same 
location, year-on-year capacity factors can vary widely. 
For example, Irish national wind capacity factors have 
historically been between 24 and 33 percent (EirGrid 
2016, Figure 5.1).

In our model, the generation of each wind farm is a func-
tion of the following predictors:

1.	 Capacity (in MW). The larger the wind farm, the more 
electricity it can generate.

2.	 Age, which is correlated with characteristics that we 
do not observe in the reported data, such as technol-
ogy and efficiency, including height of the wind shaft.

3.	 Yearly average wind speed at a specific site, which 
depends on site location and year.

4.	 Average capacity factor by region. Adding the  
capacity factor by region or country helps account  
for unobserved factors such as curtailment at the 
country level. Curtailment occurs when wind farms 
are not allowed to export their electricity to the grid 
because of transmission, distribution, or electricity 
system constraints.

MERRA-2 by NASA provides a relatively consistent 
weather-corrected model that integrates measured wind 
data from a variety of sources with atmospheric modeling 
data resulting in output that reports historical wind speed 
for areas of 0.5 degrees (°) by 0.625°, or approximately 50 
kilometers (km) by 70 km at the equator. To obtain wind 
speed for every wind farm location, which in GPPD is 
specified as a single (latitude, longitude) point, we inter-
polate wind speeds between adjacent model grid cells to 
produce a smoother spatial resolution. Grids are weighted 
inversely to their distance to the point of interest using 
inverse distance weighting. Grid-cell centers spatially 
closer to the target point have more influence on the 
interpolated value.

The workflow is depicted in Figure 7.

Gradient Boosting
Tree Regressor

GPPD

Coordinates

MERRA–2

IRENA

EIA

Capacity

Age

Yearly Average 
Wind Speed

Country Capacity
Factor

Capacity Factor
by Geography

NERC Regional Capacity
Factor in the U.S.

W
hole Labeled Dataset

Cross-Validation Set

Test Set

Predicted Capacity
Factor

80%

20%

Figure 7 | Wind Farm Generation Estimation Model Workflow

Notes: GPPD stands for Global Power Plant Database and MERRA-2 for Modern-Era Retrospective analysis for Research and Applications, Version 2, from the U.S. National Aeronautics and Space 
Administration. IRENA stands for International Renewable Energy Agency, EIA for Energy Information Administration, and NERC for North American Electric Reliability Corporation.

Source: Authors.
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We also evaluated the accuracy of an alternative two-step 
process. We first simulated generation using the Climate 
based Optimization of renewable Power Allocation (COPA) 
model, a global, bottom-up model of electricity genera-
tion (Mosshammer 2016) based on available hourly data, 
in this case, wind speed. In the second step, we fed this 
information into a machine learning model. This model 
did not improve accuracy and is more complex. This lack 
of improvement may be due to the need for detailed infor-
mation on hub height, which we do not have for all plants 
globally. We will revisit the approach if more information 
becomes available globally.

5.2 Data
MERRA-2
From MERRA-2, we collected monthly average wind 
speed at the surface level and used it to calculate annual 
average wind speed. 

To be more specific, the relevant dataset from MERRA-2 
is named “M2TMNXFLX” and the relevant field is “sur-
face_wind_speed,” coded as “SPEEDLML.”

GPPD
As shown in Table 5, 1,910 wind farms are included in 
the GPPD with 944 of them reporting generation, most of 
them in North America. North America accounts for 47 
percent of all wind plants, but 95 percent of plants with 
reported generation.

We eliminate observations where the capacity factor is 
more than three standard deviations away from the mean 
of all wind farms. This leads to the removal of 7 observa-
tions, leaving 937 observations.

5.3 Model Evaluation
Table 6 reports average errors for the test set, based on the 
holdout set of 188 samples. Predicted annual wind capac-
ity factor per power plant has an absolute error of 0.043 
and a percentage error of about 16 percent, using the 
proposed model, down from 0.062 and 24 percent in the 
baseline. Validation scores for each of the cross-validation 
folds are available in Appendix B. 

On the left side of Figure 8 (the baseline model), we 
assume that all wind farms in a given region have the 
same capacity factor. This is likely to be more accurate  

NUMBER OF 
WIND PLANTS BY 
REGION

WIND PLANTS BY 
REGION (% OF 
WORLD PLANTS)

NUMBER OF WIND PLANTS WITH 
REPORTED GENERATION DATA 
(PLANTS THAT CAN BE USED FOR 
TRAINING)

WIND PLANTS WITH REPORTED 
GENERATION DATA BY REGION 
(% OF WORLD PLANTS WITH 
REPORTED GENERATION) 

NORTH AMERICA 896 46.9% 896 94.9%

SOUTH AMERICA 301 15.8% 0 0.0%

EUROPE 622 32.5% 11 1.2%

AFRICA 24 1.3% 0 0.0%

ASIA 23 1.2% 0 0.0%

AUSTRALIA/OCEANIA 44 2.3% 37 3.9%

TOTAL 1,910 100.0% 944 100.0%

Table 5  |  Distribution of Wind Plants and Wind Plants with Reported Generation in 2016 in GPPD

Source: Authors’ elaboration of Global Power Plant Database data.
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Reported Capacity Factor
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MAE 0.0615 0.0427

MAPE 0.2440 0.1599

Table 6  |  Test Scores for Yearly Capacity Factor of Wind Plants (2016)

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error.

Source: Authors.

Figure 8 | Reported versus Estimated Capacity Factors, Baseline versus Proposed Model

Source: Authors.

in smaller countries (e.g., Luxembourg) where wind farms 
are closer to each other than they are in larger ones. On 
the right-hand side we include the output of our preferred 
estimation method, which allows for variation in capacity 
factors across wind farms and yields the average percent-
age error rate of 16 percent. Generally, the residuals under 
the wind model follow a symmetrical distribution around 
the 45-degree line and the model does not appear to 
consistently over- or underestimate generation.

Figure 9 shows that the model performs better on wind 
farms larger than 100 MW, when the mean absolute 
percentage error falls below 10 percent.

Figure 10 shows that average wind speed and wind farm 
capacity are the relatively more important predictors in 
our model.
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Feature Importance Score
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Figure 9 | Wind Model Accuracy Analysis by Plant Size

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error. MW stands for megawatt.

Source: Authors.
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6. SOLAR PHOTOVOLTAIC
In this section we focus on solar photovoltaic plants. Solar 
thermal plants represent only 1.6 percent of total solar 
capacity and are excluded from this analysis.

6.1 Model Description
Figure 11 describes the main components of a grid-
connected photovoltaic (PV) system. PV modules convert 
incoming solar radiation into electricity through the 
photovoltaic effect. Once electricity is generated, balance-
of-system (BoS) components help regulate it to ensure 
grid-quality output. One of the most important BoS 
components is the inverter, which transforms the electric-
ity from direct current (DC) to alternating current (AC), 
allowing it to be fed into the distribution system. Some-
times the PV system will have a battery or other storage 
option, which allows it to provide consistent output, 
instead of rapidly changing output when events such as 
cloud cover occur.

One of the main determinants of the amount of electric-
ity generated per MW of installed capacity is the amount 
of solar radiation received by the solar panel, which can 
be approximated by the yearly average global horizontal 
irradiance (GHI) at the surface level.

Temperature also plays a role, as increasing temperature 
decreases the efficiency of a solar panel (Dubey et al. 
2013). We therefore include the yearly average ambient 
temperature in the analysis.

PV performance decreases over time, by between 0.5 
percent to 1 percent per year (Jordan and Kurtz 2013). 
Age of the PV system may capture this effect and is added 
as another feature. Age may also be correlated with other 
factors that change systematically over time but that we 
do not observe in the available data, such as solar panel 
technology. Unfortunately, age is not commonly reported, 
so we also explore models that exclude age.

Inverter
(DC to AC)

(Optional battery)

Figure 11 | Simplified Grid-Connected Photovoltaic System

Notes: DC stands for direct current, AC for alternating current.

Source: Authors.
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We collect surface-level GHI and ambient temperature 
data from MERRA-2 at a resolution of 0.5° by 0.625° (50 
km by 70 km at the equator). Irradiance and temperature 
measurements have to be interpolated from nearby grid 
cells to create smooth spatial data, and we do so through 
the inverse distance weighting interpolation function 
introduced in section 5.1. The interpolation is purely  
two dimensional and does not include topographic relief 
or elevation.

The annual capacity factor by country or region embeds 
variations in many inputs that we are not able to measure 
directly, including the average curtailment in a country 
or region due to transmission, distribution, or system 
constraints. The capacity factors by country and by  
U.S. NERC region are derived from IRENA and the  
EIA, respectively. 

To summarize, in the solar model, the dependent variable 
is capacity factor and the independent variables are

	▪ ground-level yearly average global horizontal  
irradiance; 

	▪ yearly average ambient temperature at the location  
of the solar farm;

	▪ plant age;

	▪ plant capacity; and

	▪ average solar capacity factor by country/region.

The entire workflow is shown in Figure 12.

Figure 12 | Solar Farm Generation Estimation Workflow

Notes: GPPD stands for Global Power Plant Database and MERRA-2 for Modern-Era Retrospective analysis for Research and Applications, Version 2, from the U.S. National Aeronautics and Space 
Administration. IRENA stands for International Renewable Energy Agency, EIA for Energy Information Administration, and NERC for North American Electric Reliability Corporation.

Source: Authors.
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CODE IN MERRA-2 DESCRIPTION IN MERRA-2 FEATURE IN MACHINE LEARNING MODEL
TS Surface skin temperature Temperature

SWGNT Surface net downward shortwave flux GHI

NUMBER OF 
SOLAR PLANTS 
BY REGION

SOLAR PLANTS 
BY REGION (% OF 
WORLD PLANTS)

NUMBER OF SOLAR PLANTS WITH 
REPORTED GENERATION DATA 
(PLANTS THAT CAN BE USED FOR 
TRAINING)

SOLAR PLANTS WITH REPORTED 
GENERATION DATA BY REGION 
(% OF WORLD PLANTS WITH 
REPORTED GENERATION) 

NORTH AMERICA 1,324 88.9% 1,324 100.0%

SOUTH AMERICA 4 0.3% 0 0.0%

EUROPE 97 6.5% 0 0.0%

AFRICA 25 1.7% 0 0.0%

ASIA 39 2.6% 0 0.0%

AUSTRALIA/OCEANIA 0 0.0% 0 0.0%

TOTAL 1,489 100.0% 1,324 100.0%

6.2 Data
MERRA-2
Table 7 shows which MERRA-2 database variables we 
collect to calculate the features that feed into the machine 
learning model.

GPPD
The Global Power Plant Database includes 1,489 solar 
farms operating across the world by 2016 with a subset  
of 1,324 having labeled generation, as shown in Table 8. 
All of the reported generation data refer to North  
American plants.

The capacity, age, and technical indicators come  
from GPPD.

In this dataset there are no observations with a capacity 
factor smaller than 0 or larger than 1. We eliminate any 
observation with a capacity factor that is more than three 
standard deviations away from the mean of the capacity 
factor across all plants. This eliminates 13 observations, 
leading to a labeled dataset with 1,311 observations.

Table 7  |  MERRA-2 Field Code Map

Notes: MERRA-2 stands for Modern-Era Retrospective analysis for Research and Applications, Version 2, by the U.S. National Aeronautics and Space Administration. GHI stands for global horizontal 
irradiance.

Source: Authors and MERRA-2.

Table 8  |  Distribution of Solar Plants and Solar Plants with Generation Information (2016)

Source: Authors’ elaboration of Global Power Plant Database data.
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6.3 Model Evaluation
Based on the holdout set of 263 observations, Table 9 and 
Figure 13 show that the model results are more accurate 
than the baseline estimates. On average, the capacity fac-
tor for a power plant is estimated to be within 15 percent 
of its true capacity factor, based on the test set. Observa-
tions cluster around the 45-degree line on the right-hand 
side of Figure 13, suggesting that the predictors are able 
to explain within-region variation across solar farms well. 
The residuals on each example in the test set, as can be 
seen on the right-hand side of the figure, are symmetri-
cally and universally distributed, which is a sign that the 
model is robust enough to give predictions of constant 

BASELINE MODEL PROPOSED MODEL
MAE 0.053 0.026

MAPE 0.264 0.153

quality. Further validation could occur as we collect 
information on plants outside of the United States. Cross-
validation scores in each of the cross-validation folds are 
available in Appendix B.

The accuracy of the model improves for larger plants and 
solar farms. Figure 14 shows that for plants over 20 MW, 
the mean absolute percentage error falls under 10 percent.

Figure 15 shows the relative importance of each feature  
in the trained model. In the solar model, weather vari-
ables measuring the irradiance and temperature at the 
site play a relatively more important role in the capacity 
factor prediction.

Table 9  | Test Scores for Yearly Capacity Factor of Solar Plants (2016)

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error.

Source: Authors.

Figure 13 | Reported versus Estimated Capacity Factor, Baseline versus Proposed Model

Source: Authors.
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Figure 14 | Solar Model Accuracy Analysis by Plant Size

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error. MW stands for megawatt.

Source: Authors.
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Figure 15 | Relative Importance of Predictors in the Solar Model

Notes: Relative importance scores do not sum exactly to 1 due to rounding. MW stands for megawatt.

Source: Authors..
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PROPOSED MODEL (WITH AGE) PROPOSED MODEL (NO AGE)

MAE 0.026 0.027

MAPE 0.153 0.162

Table 10  | Test Scores for Yearly Capacity Factor of Solar Plants Excluding Age (2016)

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error.

Source: Authors.

The commissioning year of solar plants is rarely reported 
in the global solar PV information we have access to, 
which does not allow us to build the age variable. Since we 
will use the model to estimate plant-level generation glob-
ally, we also develop a version that does not rely on age as 
a predictor. 

Table 10 compares the scores on the test set to the scores 
on the test set for the model that includes age (reported in 
Table 9 in the “proposed model” column). The model with-
out age has slightly higher errors, with the mean absolute 
percentage error increasing from 15 percent to 16 percent. 
When commissioning year, and therefore age, is available, 
we use the model to estimate annual generation. When 
commissioning year is not available, the model without 
age is still a useful tool to estimate annual generation. 
Appendix C compares the scatterplot of reported versus 
estimated generation for the model without age. 

7. HYDROPOWER
Hydroelectricity plants include large plants with dams, 
smaller run-of-river plants, and pumped storage. This 
analysis excludes generation by pumped storage hydro-
power (PSH) plants, as they are a storage rather than a 
generation technology. Annual generation for PSH plants 
is negative: It takes more electricity to pump the water to 
an upper reservoir than the amount generated when the 
water runs back down through the turbine. The stored 
electricity can be accessed quickly and used to meet util-
ity or regional peak demand. Pumped storage plants are 
undoubtedly important components of some electricity 
grids, but their operation as essentially electricity arbitra-
geurs is unlikely to be captured with any certainty at the 
annual level.

7.1 Model Description
Hydroelectricity plants use the water flow to spin the 
turbines that produce electricity (Figure 16). Large hydro-
electric projects have dams and a reservoir. Smaller ones 
are typically run-of-river plants, which have a weir to pool 
the water, rather than a dam. The weir allows some of the 
water to be diverted from the main river course and sent 
to a turbine (Paish 2002). 

Hydroelectricity generation largely relies on precipitation 
and runoff accumulated across the drainage area where 
the plant sits.

We include the following variables to predict annual plant-
level generation: 

1.	 Capacity of the plant, which determines the maximum 
electricity that can be generated at any given time. 

2.	 Average runoff (including surface and subsurface 
runoff) for the power plant site. 

3.	 The size of the river that flows to the reservoir, mea-
sured by river order. Smaller orders refer to larger riv-
ers. Order 1 represents the main stem river from sink 
to source; order 2 refers to all tributaries that flow 
into a first-order river; order 3 represents all tributar-
ies that flow into a second-order river; and order 0 is 
used for conglomerates of small coastal watersheds 
(Lehner and Grill 2013).

4.	 Annual average capacity factor by country, which in-
corporates other country- or region-level information 
that we do not observe or measure directly. 

Day-to-day operations of hydroelectricity plants are 
typically determined by full-system and legal require-
ments, including environmental constraints (Niu and 
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Generator

Turbine
River

Dam

Intake

Reservoir

Figure 16 | Simplified Hydroelectricity System 

Source: U.S. Environmental Protection Agency. 2017. “Water Energy.” Web Archive. Last updated May 9. https://archive.epa.gov/climatechange/kids/solutions/technologies/water.html.

Insley 2013). Over a whole year, day-to-day requirements 
become less important and the amount of runoff becomes 
a major determinant of generation (Kao et al. 2015). 

We include surface and subsurface runoff separately in 
the model, as surface runoff represents a fast response  
to precipitation events, whereas subsurface, or base  
flow, runoff has a lower response to precipitation (Kao  
et al. 2015).

Simply measuring runoff at the reservoir location pro-
vides limited information, as water accumulates across 
a drainage area. We therefore sum measurements across 
the relevant drainage area as a predictor of generation, 
following Kao et al. (2015).

 The ERA5 global climate data, coupled with Hydro-
BASINS, are used to measure the drainage area and 
aggregate the relevant meteorological data within the 
area. HydroBASINS is a series of polygon layers that 
depicts watershed and sub-basin boundaries at a global 
scale. Each polygon has a unique ID and links to its 
upstream polygon. Using the plant coordinates, we locate 

the polygon where a particular plant sits (e.g., polygon 1 
in Figure 17), and then backtrack all upstream polygons 
to identify the whole drainage area. The arrows across 
polygons represent the actual direction of water flow and 
accumulation. For every polygon, HydroBASINS identifies 
the upstream polygon, if any. By looking up the upstream 
polygon of 2, we find 3. We continue this search until we 
reach a polygon that doesn’t have any upstream polygon 
(polygon 5 in this case). The drainage area of this plant is 
then defined as the ensemble of all polygons found in  
this process.  

The ERA5 global climate data can be aggregated across 
the drainage area identified with the HydroBASINS data. 
Total runoff values are added as predictors to the model.

We also include capacity of the plant from GPPD, and the 
annual country/region capacity factor from the IRENA 
and EIA reports. Age is not included, since the correlation 
between age and capacity factor was found to be weak. 
Figure 18 depicts the structure of the model and the work-
flow from input data to estimation.
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Figure 17 | Drainage Area Delineation Process

Source: Authors.
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Figure 18 | Workflow for Hydro Plant Generation Estimation Model

Notes: ERA5 is a database maintained by the European Centre for Medium-Range Weather Forecasts. GPPD stands for Global Power Plant Database, NERC for North American Electric Reliability 
Corporation, IRENA for International Renewable Energy Agency, and EIA for Energy Information Administration.

Source: Authors.
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7.2 Data
ERA5
Measurements for the runoff variables are provided by 
ERA5. ERA5 is the fifth-generation ECMWF reanalysis 
for the global climate and weather, with data starting in 
1979 to within three months of real time. The data reso-
lution is 0.25° by 0.25° (about 31 km by 31 km near the 
equator). ERA5 provides similar information as MERRA-
2, but with higher grid resolutions, which help us assign 
appropriate values to the drainage area of each plant.

Table 11 shows which ERA5 database variables we collect 
as inputs for the machine learning model.

CODE IN ERA5 FEATURE IN MACHINE LEARNING MODEL
SRO Surface Runoff

SSRO Subsurface Runoff

ORDER Order of Related River

NUMBER OF 
HYDROELECTRICITY 
PLANTS BY REGION

HYDROELECTRICITY 
PLANTS BY REGION 
(% OF WORLD 
PLANTS)

NUMBER OF HYDROELECTRICITY 
PLANTS WITH REPORTED 
GENERATION DATA (PLANTS 
THAT CAN BE USED FOR 
TRAINING)

HYDROELECTRICITY PLANTS 
WITH REPORTED GENERATION 
DATA BY REGION (% OF WORLD 
PLANTS WITH REPORTED 
GENERATION) 

NORTH AMERICA 1,474 39.5% 1,364 77.4%

SOUTH AMERICA 633 16.9% 0 0.0%

EUROPE 841 22.5% 62 3.5%

AFRICA 80 2.1% 25 1.4%

ASIA 690 18.5% 311 17.7%

AUSTRALIA/OCEANIA 18 0.5% 0 0.0%

TOTAL 3,736 100% 1,762 100%

GPPD
GPPD contains information on 3,736 hydroelectric-
ity power plants commissioned before 2016 across the 
world, of which 1,762 include reported generation, as 
shown in Table 12. Hydroelectricity plants in GPPD come 
from multiple regions, including North America, South 
America, Europe, and Asia. North America and Asia are 
the major sources of observations with reported genera-
tion, accounting for 77 percent and 18 percent of all hydro 
reported generation, respectively.

Table 11  | ERA5 Field Code Map

Source: Authors and European Centre for Medium-Range Weather Forecasts.

Table 12  | Distribution of Hydro Plants and Hydro Plants with Reported Generation (2016)

Source: Authors’ elaboration of Global Power Plant Database data.
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Figure 19 | Different Levels in HydroBASINS 

Note: Pfafstetter coding divides each basin into nine smaller ones, starting with Level 1 for the main basin (Verdin and Verdin 1999).

Source: Lehner and Grill 2013.

We exclude 262 plants that are associated with basins 
small enough that ERA5 data have no grid cell center  
that falls within the basin. That narrows down the sample 
size to 1,500. Four plants have a capacity factor that dif-
fers from the mean by more than three standard devia-
tions, and we eliminate them from the analysis, leaving 
1,496 observations.

HydroBASINS
HydroBASINS provides 12 possible basin levels, from 
more general to more detailed, as depicted in Figure 19. 
We found that the correlation between runoff and gen-
eration is strongest when runoff is measured at level 12, 
which is the highest and most detailed level. 
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BASELINE PROPOSED MODEL
MAE 0.156 0.117

MAPE 0.596 0.459

Table 13  | Test Scores for Yearly Capacity Factor of Hydroelectricity Plants (2016)

Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error.

Source: Authors.
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Figure 20 | Reported versus Estimated Capacity Factor of Hydro Plants, Baseline versus Proposed Model

Source: Authors.

7.3 Model Evaluation
Based on the holdout set of 299 observations, Table 13 
and Figure 20 suggest that the proposed hydro model 
improves accuracy compared with the assumption that all 
hydro plants in a country have the same capacity factor. 
The estimate remains noisy, with a percentage error for 
annual plant-level generation of about 46 percent.

The validation scores of each cross-validation fold can be 
seen in Appendix B. 

Although the MAPE drops sharply as the capacity cut-
off increases (see Figure 21), the MAE doesn’t display a 
clearly increasing or decreasing pattern.

The relative importance of each feature among all relevant 
features is shown in Figure 22. The aggregated surface 
and subsurface runoff and the capacity of the plant are 
relatively more important than other predictors.
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Feature Importance Score
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Figure 22 | Relative Importance of Predictors in the Hydropower Model

Note: MW stands for megawatt .

Source: Authors .
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Notes: MAE stands for mean absolute error and MAPE for mean absolute percentage error. MW stands for megawatt.

Source: Authors.
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8. LIMITATIONS
We are not able to factor in all potentially relevant  
predictors. Data availability is a major constraint on 
producing more complex models. Our goal is to estimate 
annual generation for power plants located across the 
world, so we use predictors that are available globally.  
As the Global Power Plant Database continues to develop 
and more power plant attributes are discovered and 
recorded, the methods described here may co-evolve with 
the database. Plant technology is a necessary technical 
attribute to provide more context about the plant than fuel 
type is able to do alone. Efficiency, which may be tightly 
coupled to plant technology, is an additional technical 
metric that would likely provide an improvement in pre-
dictive power for annual generation.

The estimates from this model can be applied to plants 
only when we have the relevant technical and environ-
mental characteristics (e.g., technology type for natural 
gas plants, runoff information for hydro plants). While an 
improvement over baseline GPPD estimates, this means 
that approximately 18 percent of the plants do not contain 
the requisite parameters and still rely on average capacity 
factors as their best estimate. We hope to overcome this 
limitation as we continue improving the information on 
the technical characteristics of each plant through addi-
tional data collection and contributions.

Most of the models were fit to training sets that are 
dominated by data from the United States, while the goal 
is to estimate generation for power plants in countries or 
regions outside of the U.S. The models included average 
annual capacity factor by country by fuel, which helps 
to improve generalization, but we still cannot fully avoid 
the risks of the model overfitting to the training data 
and therefore not being generalizable. In more technical 
terms, we cannot ensure that the data used for training 
and in the application of the model have similar distri-
butions. Further data collection and advancements in 
openness around electricity data are needed to mitigate 
this concern.

While signaling an improvement over the baseline, some 
of the estimates are still quite noisy. This includes the esti-
mates for natural gas generation, where the average error 
is 170 percent of the mean generation. Further analysis is 
needed to identify other features that are available glob-
ally and can help improve the estimation. Because of the 
flexibility of gas plants to meet less predictable variations 
in supply-demand balance, including additional system-
level variables may be warranted.

The models proposed here are applied to a power plant 
database that is incomplete and therefore contains an 
imperfect picture of global electricity generation capacity. 
The generation of each power plant is estimated indepen-
dently of other power plants and there is no guarantee 
that aggregate generation (i.e., the sum of generation for 
all power plants in a country) matches independently 
provided measures. The utility of these estimates is in 
providing variable capacity factors for plants within a 
country. As more power plants are identified, mapped, 
and incorporated into the database, the methods used 
here can be directly applied to these plants and yield 
annual generation estimates.
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9. CONCLUSION AND FUTURE WORK
This project evaluated the accuracy of annual genera-
tion estimations for wind, solar, hydro, and natural gas 
plants based on geographic, environmental, and system 
variables. The methodology focuses on estimating each 
plant’s deviation from the average generation of plants of 
its type based on detailed information on plant-level and 
geo-located environmental factors.

The analysis found that plant-level annual generation for 
wind and solar can be estimated fairly precisely given 
information on how much wind blows and sun shines at 
the plant location. The low penetration of intermittent 
renewables until recently means that system constraints 
have been limited in practice: When wind and solar 
resources are available, they are generally dispatched. 

Annual generation from hydropower plants can be 
predicted less accurately, and depends significantly on 
water runoff. Natural gas plants were the most difficult to 
predict annual generation for, highlighting how system 
factors, for which we have limited information, are impor-
tant in determining when and how they are dispatched. 

There are a few areas that can be explored in future work 
to improve generation estimates. The first applies tech-
niques that can improve method robustness when the 
target data are not necessarily similar to the training data 
(Pan and Yang 2010; Jean et al. 2016) or when unlabeled 
samples largely outnumber labeled samples (Kostopoulos 
et al. 2018).

A second area involves searching for data that are more 
closely related to generation. One option for thermal 
plants includes infrared information that identifies 
whether a plant is on or not, similar to the generation 
model adopted by the Carbon Tracker for coal plants 
(Gray et al. 2018). This would allow the models to achieve 
higher accuracy when system factors are important, but 
would rely on the existence of appropriate high-frequency 
information.

Finally, we continuously add new training data as they 
become available. While the additional data will not  
affect our estimation methods, they will improve the 
predictive models. They will also help us develop time 
series, either by adding annual generation estimations 
for different years or developing higher frequency data. 
In addition, we will update technical information for the 
plants as it becomes available, increasing the number  
of plants for which we can adopt the methods laid out  
in this technical note.

A link to the code is provided in Appendix E.
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APPENDIX A. COUNTRIES WITH REPORTED  
PLANT-LEVEL GENERATION

COUNTRY NUMBER OF PLANTS WITH REPORTED GENERATION
United States 7,944

India 427

Australia 248

Vietnam* 156

Germany 124

Italy 116

Spain 81

Guatemala* 72

France 58

Portugal 42

Netherlands 42

Austria 40

Poland 37

Sweden 26

Finland 24

Romania 23

Kenya* 21

Morocco* 18

Denmark 12

Belgium 12

Czech Republic 9

Hungary 9

Lithuania 6

United Kingdom 5

Estonia 4

Slovenia 4

Latvia* 2

Montenegro* 2

Ireland 2

Egypt* 1

Luxembourg 1

Table A1  | Countries with Reported Plant-Level Generation (2016)

Note: * Countries that are included in the “Other” category in Table 1. 

Sources: See Table 1.
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APPENDIX B. CROSS-VALIDATION SCORES OF 
EACH MODEL
This section reports the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE) for the validation phase of each model.

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 FOLD 6 FOLD 7 FOLD 8 FOLD 9 FOLD 10
MAE 0.135 0.151 0.131 0.148 0.153 0.176 0.136 0.138 0.141 0.136
MAPE 1.495 1.729 1.879 1.581 1.371 2.164 1.368 1.977 2.301 1.850

FOLD 1 FOLD 2 FOLD 3  FOLD 4  FOLD 5  FOLD 6  FOLD 7  FOLD 8  FOLD 9  FOLD 10
MAE 0.053 0.046 0.047 0.043 0.047 0.043 0.044 0.050 0.051 0.046
MAPE 0.233 0.167 0.191 0.194 0.191 0.154 0.178 0.212 0.192 0.194

FOLD 1  FOLD 2  FOLD 3  FOLD 4  FOLD 5  FOLD 6  FOLD 7  FOLD 8  FOLD 9  FOLD 10
MAE 0.025 0.031 0.027 0.030 0.030 0.024 0.030 0.027 0.031 0.034
MAPE 0.147 0.156 0.165 0.131 0.168 0.118 0.183 0.161 0.194 0.226

FOLD 1  FOLD 2  FOLD 3  FOLD 4  FOLD 5  FOLD 6  FOLD 7  FOLD 8  FOLD 9  FOLD 10
MAE 0.122 0.116 0.137 0.113 0.127 0.114 0.109 0.136 0.117 0.117
MAPE 1.130 9.361 0.868 1.055 6.658 0.865 0.578 1.250 0.946 0.428

Table B1  |  Natural Gas Cross-Validation Error Scores by Fold

Source: Authors.

Table B2  |  Wind Model Cross-Validation Error Scores by Fold

Source: Authors.

Table B3  |  Solar Model Cross-Validation Error Scores by Fold

Source: Authors.

Table B4  |  Hydropower Model Cross-Validation Error Scores by Fold

Source: Authors.
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APPENDIX C. SOLAR MODEL WITHOUT AGE
Figure C1 compares the scatterplot of estimated versus reported generation  
for the solar model when age is available (left) to that when age is not available 
(right) for the test sample. The closer the points are to the 45-degree line, the 
more accurate the estimate. While age should be included when it is available, 
using the model without age is still preferable to using the naïve baseline model.
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Source: Authors.
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APPENDIX D. EXTERNAL DATA SOURCES
1.	 HydroBASINS. Data available at www.hydrosheds.org.

2.	 U.S. Energy Information Administration. “Form EIA-923.” Data available at 
https://www.eia.gov/electricity/data/eia923/.

3.	 U.S. Energy Information Administration. “Form EIA-860.” Data available at 
https://www.eia.gov/electricity/data/eia860/.  

4.	 International Energy Agency Statistics on Electricity Generation by Country 
and Fuel. Data available at https://www.iea.org/statistics/?country=WORLD&
year=2016&category=Electricity&indicator=ElecGenByFuel&mode=table&da
taTable=ELECTRICITYANDHEAT.

5.	 International Energy Agency, OECD—Net Electrical Capacity. Data available 
at https://www.oecd-ilibrary.org/energy/data/iea-electricity-information-
statistics/oecd-net-electrical-capacity_data-00460-en.

6.	 Central Electricity Authority of India. Data available at http://www.cea.nic.in/
reports.html.

7.	 National Greenhouse and Energy Reporting of Australia. Data available 
at http://www.cleanenergyregulator.gov.au/NGER/National%20green-
house%20and%20energy%20reporting%20data/electricity-sector-emis-
sions-and-generation-data.

8.	 European Network of Transmission System Operators for Electricity (ENTSO-
E). Data available at https://transparency.entsoe.eu/generation/r2/actual-
GenerationPerGenerationUnit/show.

9.	 World Electric Power Plants Database, version March 2017. Current version 
available at https://www.spglobal.com/platts/en/products-services/electric-
power/world-electric-power-plants-database.

10.	 European Centre for Medium-Range Weather Forecasts, Reanalysis 5 (ERA5). 
Data available at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5.

11.	 U.S. National Aeronautics and Space Administration, Modern-Era Retrospec-
tive analysis for Research and Applications, Version 2 (MERRA-2). Data avail-
able at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/.

12.	 International Renewable Energy Agency statistics on capacity and genera-
tion. Data available at https://www.irena.org/Statistics/View-Data-by-Topic/
Capacity-and-Generation/Statistics-Time-Series. 

APPENDIX E. CODE 
The code is hosted on GitHub and can be accessed at https://github.com/wri/
gppd-ai4earth-api.

http://www.hydrosheds.org
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/electricity/data/eia860/
https://www.iea.org/statistics/?country=WORLD&year=2016&category=Electricity&indicator=ElecGenByFuel&mode=table&dataTable=ELECTRICITYANDHEAT
https://www.iea.org/statistics/?country=WORLD&year=2016&category=Electricity&indicator=ElecGenByFuel&mode=table&dataTable=ELECTRICITYANDHEAT
https://www.iea.org/statistics/?country=WORLD&year=2016&category=Electricity&indicator=ElecGenByFuel&mode=table&dataTable=ELECTRICITYANDHEAT
https://www.oecd-ilibrary.org/energy/data/iea-electricity-information-statistics/oecd-net-electrical-capacity_data-00460-en
https://www.oecd-ilibrary.org/energy/data/iea-electricity-information-statistics/oecd-net-electrical-capacity_data-00460-en
http://www.cea.nic.in/reports.html
http://www.cea.nic.in/reports.html
http://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data
http://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data
http://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data
https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://github.com/wri/gppd-ai4earth-api
https://github.com/wri/gppd-ai4earth-api
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